【轴承网】 在进行直线运动
轴承的设计时,存在着诸多误区,包括所有钢轴都是相同的、不可在恶劣环境中使用直线轴承、轴承座圈与滚动体接触越紧密负荷能力越强、不重视轴承润滑剂的正确选择、快速运转直线轴承将缩短轴承的运动周期、滚动接触体不会磨损、不重视表面抛光、使用小型轴承会降低系统高度、轴出现沟槽时轴会损坏,以及材料硬度越大轴承性能越好等。为了更好地帮助设计者在进行直线运动轴承的设计中避免这些误区,本文将逐一对上述误区进行分析。 所有钢轴都是相同的 直线运动轴承的轴最常用的材料是中度高碳钢。工程师应当与供应商确认所使用钢材的碳含量、伸直度、弯曲度、表面抛光度、硬度以及硬化层深度等是否适用于轴承的应用环境。钢材内的杂质会导致轴承过早损坏,原因是其可能会对轴承产生较大的Hertzian接触应力。材料的化学组成和均匀性不足会影响轴的加工性能,尤其会影响降低粗糙度或高点的能力。通常其表面需要含有带有波谷的坪区,同样也需要足够的硬度和硬化深度以支持较高轴承负荷下的Hertzian接触应力,确保不会发生表层以下的过早损坏。 直线轴承不可在恶劣环境中使用 请特别注意,当在低温或深海环境中使用直线轴承时,设计结构、正确密封和材料选择均是至关重要的因素。其中一个要避免的误区是忽略温度的剧烈变化(例如,-40~85℃)导致尺寸变化的热效应对轴承轴向和径向装配间隙的影响。其可能需要配有刮板的特殊密封和润滑选件,而选择涂层和材料时,盐雾试验也有可能不会最终测量出特定应用的抗腐蚀性。举例说明,标准盐雾与完全浸没并不相同。另外,还有很多保护表面的选件,都各有其优势。对于
滚动轴承,TDC(薄密镀铬)涂层要比TDN(薄密镀镍)涂层具有更好的耐磨损特性,原因并不在于摩擦特性,而是其硬度更高。但在标准盐雾试验中优于TDC的TDN在轴承接触应力方面则表现较差。 轴承座圈与滚动体接触越密切负荷能力越强 人们通常误认为负荷能力越强,轴承性能越好。对于滚动轴承,沟槽半径与滚动体半径之间的比率为密切因数,而由于材料特性会对应力有一定限制,几何一致性(密切度)的增加则扩大了接触表面的面积,因此,提高了轴承的负荷能力。但是由于特定的限制性,当密切度变得很大时,轴承的性能开始下降,负荷能力也随之降低。其中一部分原因是切向切变差异(作为相对表面加速度的函数)的增大。同时,公差减少以及高密切度因数也会导致高摩擦特性,这些都证明了密切度过大并不是好事。图1 直线运动轴承产品的设计存在诸多误区 不重视轴承润滑剂的正确选择 中等厚度的锂基润滑脂即可适用于大多数轴承。认为润滑剂并不重要,或者认为润滑脂作为轴承润滑剂要比润滑油更好,这些都是错误概念。正确选择润滑剂是直线轴承应用的一个重要环节,通常可能会是轴承性能完全或不足的根本原因所在。滚动体和轴承座圈之间的膜层是EHL(弹流润滑层)。这种润滑层具备极高的应力,可同时抗击物理(例如热力和切变)和化学(例如污染物和溶剂)冲击(可导致润滑剂失效的冲击),作为轴承表面的主要保护层,防止过早损坏。润滑是保证轴承性能的重要因素。 润滑剂的种类很多,从用于高负荷的带有EP添加剂的高粘度润滑脂,到用于化学保护的带有防腐剂的低粘度润滑油;从用于降低粘度破坏或防止蒸发损失的合成润滑剂,到用于低摩擦特性或兼容性考量的中性或有机润滑剂。有些特殊润滑剂专门设计用于消声或抵抗富氧环境亦或极端温度状况。因此,选择正确润滑剂的重点就是要详细了解操作环境。 快速运转直线轴承将会缩短轴承的运动周期 滑动轴承以及狭义上的径向轴承和油膜轴承在其运动周期中对速度这一因素极其敏感,但是有趣的是,滚动直线轴承的运动周期仅仅因速度和加速度对系统负荷的影响而改变。只要运动体系用作影响负荷的因素,直线轴承就不会受到PV(压力速度)的影响,不会对排热因素敏感,也不会受是否支持宏观膜层因素的影响(根据伯努利方程,液体边界层是主宰因素,速度是主要变量)。当速度和加速度超过一定的标准,即滚动体不再滚动或开始影响EHL(超过v=3~5m/s且a=10g),此时,滚动直线轴承的L10运动周期可通过Lundberg和Palmgren轴承失效理论中的方程进行估算:运动周期=(额定负荷/等效负荷)3×额定运动量,其中速度和加速度并不是因数。 滚动接触体不会磨损 滚动接触体不会达到滑动轴承的磨损程度,与较低的摩擦系数有着莫大的关联,只是微观上的磨损而已。在有着明显密切几何体的轴承中,滚动体和轴承座圈之间的相对切向表面速度存在差异。表面明显不会以相同速度运转。这一差异会导致润滑剂的切变,损坏润滑膜层的粘度,危及到EHL(可导致磨损和过早损坏)。根据负荷和环境状况的不同,可能需要较高频率的再润滑循环。 忽视表面抛光的重要性 并不是所有所谓的表面抛光都是相同的,有时候外表是具有欺骗性的。表面抛光可称之为Ra、Rrms和Rpk等。有些表面抛光基于平均读数,而有的则是峰值到谷值或峰值到峰值的读数。对于轴承的负荷性能来说,表面抛光至关重要。通常设计者需要注意高点,对于相同表面抛光值,带有谷值的坪区要优于带有峰值到谷值的坪区。表面太粗糙(长刺或高点),通常意味着抛光更难,这对于轴承的性能无益。表面太精细,抛光则会影响润滑剂在轴承表面形成适当膜层的性能,同样不利于轴承的性能。因此,在大多数情况下,在轴承应用中表面抛光不应低于2Ra,这是决定表面抛光优势的关键。 使用小型轴承会降低系统高度 许多设计者都会陷入这样一个误区,即力求寻找更为紧凑且小巧的轴承。这一误区忽视了实际决定系统整体高度的其他参数或元件。这些元件通常是驱动系统、支架、马达或者变速箱。这些会限制尺寸大小的元件对于系统至关重要,设计系统时需要及早考虑。忽视这一点往往会导致设计者需要在小型尺寸的直线轴承下面放置额外的垫圈或冒口,以构建足够的高度与驱动器、马达或支架相匹配。通过整体设计以及正确选择系统元件,即可避免时间、资金的浪费,以及系统元件误用的损失。 轴出现沟槽时会损坏 恰恰相反,轴出现沟槽并不是坏事。有些时候直线轴承会在高负荷情况下运行,在几次运行之后轴就会出现沟槽,这种现象称之为“安定状态”。当轴承在高负荷状态下运行时,Hertzian接触应力会非常大,大到足够熔化硬度极高的高碳轴承钢。由于这只是压力效应,熔化的材料并不会移动或转换,导致下层脱离,最终导致材料损坏或磨损。其实际接触应力由于沟槽导致接触面积增加而低于等效应力的位置保持稳定状态。负荷不会造成材料的进一步熔化。 如果出现这种情况,即轴开始出现沟槽,然后保持稳定。因此,工程师此时不应旋转或更换轴,因为接下来轴承会承受另外一次“安定状态”循环,若滚珠不够坚硬就会超过限定值。 材料硬度越大轴承性能越好 较高的材料硬度代表了较高的屈服应力极限值,但是这并不一定是好事。高硬度同样意味着脆度的增加,也就意味着要牺牲材料的韧度。其可能在弯曲之前就会破裂,但有时弯曲是必须的。 这也是一种平衡取舍。紧密接触轴承元件的适当硬度会优化轴承的性能。标准直线轴承基本上有3个主要负荷轴承元件:内座圈、滚动体和外座圈。如果滚珠比内座圈要硬很多,则会由于高接触应力而磨损内座圈。如果滚珠较软,则自身会磨损,导致滚珠出现平斑。外座圈同样存在这些问题。通常情况下,对于直线轴承,外座圈要比内座圈运行更多的循环周期,但是根据内座圈的几何形状(例如密切度),外座圈最好比内座圈的硬度稍高或稍低。不管是何种情况,稍低硬度的滚动体(因材料而异)会更为理想,可以优化轴承的整体性能。